A 45 Integers 12 ( 2012 ) Supercongruences for a Truncated Hypergeometric Series
نویسندگان
چکیده
The purpose of this note is to obtain some congruences modulo a power of a prime p involving the truncated hypergeometric series p−1 � k=1 (x)k(1− x)k (1)k · 1 ka for a = 1 and a = 2. In the last section, the special case x = 1/2 is considered.
منابع مشابه
Binomial Coefficient–harmonic Sum Identities Associated to Supercongruences
We establish two binomial coefficient–generalized harmonic sum identities using the partial fraction decomposition method. These identities are a key ingredient in the proofs of numerous supercongruences. In particular, in other works of the author, they are used to establish modulo p (k > 1) congruences between truncated generalized hypergeometric series, and a function which extends Greene’s ...
متن کاملOn a Supercongruence Conjecture of Rodriguez-villegas
In examining the relationship between the number of points over Fp on certain Calabi-Yau manifolds and hypergeometric series which correspond to a particular period of the manifold, Rodriguez-Villegas identified numerically 22 possible supercongruences. We prove one of the outstanding supercongruence conjectures between a special value of a truncated generalized hypergeometric series and the p-...
متن کاملGaussian Hypergeometric Series and Extensions of Supercongruences
Let p be an odd prime. The purpose of this paper is to refine methods of Ahlgren and Ono [2] and Kilbourn [13] in order to prove a general mod p congruence for the Gaussian hypergeometric series n+1Fn(λ) where n is an odd positive integer. As a result, we extend three recent supercongruences. The first is a result of Ono and Ahlgren [2] on a supercongruence for Apéry numbers which was conjectur...
متن کاملSupercongruence Conjectures of Rodriguez-villegas
Abstract. In examining the relationship between the number of points over Fp on certain Calabi-Yau manifolds and hypergeometric series which correspond to a particular period of the manifold, Rodriguez-Villegas identified 22 possible supercongruences. We provide a framework of congruences covering all 22 cases. Using this framework we prove one of the outstanding supercongruence conjectures bet...
متن کاملHypergeometric (super)congruences
The sequence of (terminating balanced) hypergeometric sums an = n ∑ k=0 ( n k )2( n+ k k )2 , n = 0, 1, . . . , appears in Apéry’s proof of the irrationality of ζ(3). Another example of hypergeometric use in irrationality problems is Ramanujan-type identities for 1/π, like ∞ ∑ k=0 ( 2k k )3 (4k + 1) (−1) 26k = 2 π . These two, seemingly unrelated but both beautiful enough, hypergeometric series...
متن کامل